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Discrete time Markov chains (DTMC)
P(X¢|Xt-1, Xi—2,..., Xo) = P(X¢| X¢—1)
Continuous time Markov chains (CTMC)

P(Xi|X,, X,) = P(X;|X,) whenr <s
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Markov chain in the context of MCMC

» When modeling in phylogenetics we used CTMC because
of the Markovian property.

» When using a Markov Chain for inference(MCMC) we use
DTMC and we are also interested in the ergodic property



An example of ergodic Markov Chain: Brownian Motion

Stationary distribution N (p, o%t)
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To know the Posterior distribution P(6|D)



What we want

To know the Posterior distribution P(6|D)

Goal: To build a Markov chain that in the long run has P(6|D)
as the stationary distribution.
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» We want to estimate new parameters ¢’ such that the
P(6'|D)

P(60|D)

» So how do we propose those new parameters 0'?

posterior odds are high



Answer: A proposal distribution that is easy to
simulate from
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Proposal moves explained via zombies

Zombie Goal: To eat all the brain as fast as possible

Tasting the same area of the brain

No more sweet brail

Based on Paul Lewis’ Bayesian Statistics lectures, 2017.
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Metropolis-Hastings algorithm

1. Select an initial value of 6,

2. A new value of the parameters ¢’ is a draw from proposal
q(0'19)

3. Is that new value good? It depends on the Acceptance
ratio R: The posterior odds and the "direction”




Hasn't eaten yet but soon

R>1

0 6’



Tasting the same area of the brain

R=0.9

y



No more sweet brain

R=0.000



Metropolis-Hastings algorithm

1. Select an initial value of 6,

2. A new value of the parameters ¢’ is a draw from proposal
q(0'10)

3. Draw a uniform value u between (0,1). If u < min(1, R)
then move to ¢’



Additional considerations of the acceptance ratio

Acceptance ratio R: The posterior odds and the "direction” is
usually written in likelihood-prior form

P(0'|D) q(019)

"= P@D) @19

P(D|0")P(6") q(019)
P(DI6)P(9) q(0'10)

And it simplifies if the proposal is symmetric ¢(0'|0) = q(6]0)



Let’s think further about proposals

Conservatie zombie
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Let’s think further about proposals

Conservatie zombie
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» Pro: Zombie will be constantly eating brain

» Con: Zombie will take forever to eat the whole brain (or will
never finish eating)
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Let’s think further about proposals
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» Pro: Zombie will finish eating the brain

» Con: Zombie will go through long periods of brain shortage



