Rev Language Reference


srMaxIteration - Maximum iteration stopping rule

Terminates an MCMC run once the specified number of iterations have been performed. This rule would typically be used alongside other stopping criteria.

Usage

srMaxIteration(Natural maxIteration)

Arguments

maxIteration : Natural (pass by value)
The maximum number of iterations to run.

Example

# Binomial example: estimate success probability given 7 successes out of 20 trials
r ~ dnExp(10)
p := Probability(ifelse(r < 1, r, 1))
n <- 20
k ~ dnBinomial(n, p)
k.clamp(7)
mymodel = model(k)

moves = VectorMoves()
moves.append( mvSlide(r, delta=0.1, weight=1) )

paramFile = "parameters.log"

monitors = VectorMonitors()
monitors.append( mnModel(filename=paramFile, printgen=100, p) )

# Stop when 1000 iterations have been completed
stopping_rules[1] = srMaxIteration(1000)

# Create the MCMC object
mymcmc = mcmc(mymodel, monitors, moves)

# Begin the MCMC run
mymcmc.run(rules = stopping_rules)

See Also